
FanXE — The Fantastic XML Editor

Thomas C. Allard

Banking Analysis Section
Division of Monetary Affairs

Board of Governors of the Federal Reserve System
20th Street & Constitution Avenue NW, Washington DC, 20551

(tallard@frb.gov)

October 2005

Abstract

FanXE1 is an XML editor written in [incr Tcl] using
tdom and Tkhtml. A developer builds XSLT style
sheets that transform nodes in the DOM into HTML
forms editable in the GUI. When the form is submit-
ted, the DOM node is rebuilt. FanXE can maintain
XML documents under revision control or within a
PostgreSQL database. The base class is easily exten-
sible as demonstrated with three subclasses. FanXE
can act as a command-line XSLT engine and includes
XSLT extensions that allow style sheets to execute Tcl
commands in a safe interpreter.

1 Introduction

On my first foray into XML, I needed a highly customiz-
able GUI for editing XML documents. This included
choosing which nodes are displayed to the end user and
the ability to edit nodes and their children in a single
form. The end-user must not be required to know any-
thing about XML. Experienced users should be able to
view the underlying XML and use XPath expressions
to search the documents. Developers should be capable
of writing FanXE applications with limited or no Tcl
experience (extensive XML/XSLT knowledge, however,
is required for developers).

It was also important that my editor be the face of
different applications and therefore it had to be eas-
ily extensible. The “front page” can be either a static
HTML page or dynamically generated HTML from a
method inside the class. Links in the HTML can be
either XPath expressions to nodes in the XML docu-
ments, links to methods in the class, or just regular
web links.

1Pronounced “fancy.”

FanXE uses the Document Object Model (DOM) to
operate on all XML documents. All DOM operations
are performed by the tdom package.

FanXE reads an XML file called fanxe.xml2 which
determines which XML documents will be read into the
DOM, which nodes will be displayed in the GUI and
how they will be labeled, which style sheets apply to
each node, and all other configuration details for the
GUI. FanXE also loads a user configuration file.3 The
user configuration file can include additional DOMs to
load and can override any other aspect of the GUI con-
figuration. Both the fanxe.xml file and the user config-
uration file can be edited within the FanXE GUI.

2 GUI Overview

The FanXE GUI editor is split into three panes: a tree
view of all XML DOMs, an HTML view pane, and a
tabbed pane. The layout of panes is user-configurable
(see section 2.4).

2.1 Tree Pane

The Tree pane (Figure 1) presents multiple DOMs in a
tixTree widget (see section 5.3.1). Not all branches of
the DOM are shown in the tree, just those configured
in the fanxe.xml configuration file (see section 2.4).

2.2 View Pane

Selecting any node in the Tree pane will run a style
sheet associated with that node and display the HTML

2The path of the fanxe.xml file is set with the -xmlDir option.
Subclasses have their own -xmlDir option set and load their own
set of XML documents.

3Stored in the user’s $HOME/.tk/fanxe directory with “class-
name.xml” as the file name.

1

Figure 1: Tree pane

results in the View pane (Figure 2). The View pane is
a Tkhtml html widget which is a fairly full-featured
web browser (see section 5.2). FanXE supports a spe-
cial FanXE hostname (see section 2.5) as well as a
special fanxe:// URI (see section 2.6). FanXE does
not support HTML forms except for editing the nodes
(see section 2.7).

Clicking on the Help icon () will display help in-
formation. The URI for the help file is configured in
the fanxe.xml file and it can be a fanxe:// URI.

2.3 Tabbed Pane

The Tabbed pane (Figure 3) contains the log messages
and tabbed Tkhtml windows. It is built with the BLT
tabset widget (see section 5.3.2). Middle clicking on
any node in the Tree pane or middle-clicking on any
link will open the link in a new tab instead of using the
View pane.

Style sheets associated with nodes may contain
HTML form elements for editing the node (see section
2.7). More commonly, the style sheet will present a
non-editable summary of the node and include an
button that will run a second style sheet that is al-
ways opened in a new tab. FanXE uses specially con-
structed HTML form elements that, when submitted,
reconstruct the DOM node. If the node is already being
edited, the previous tab will be moved to the foreground

Figure 2: View pane

Figure 3: Tabbed pane

2

and the edit style sheet will not be reapplied.
Edit style sheets will commonly have ,

, and buttons (including the
fanxe templates.xsl style sheet and calling the
fanxe:buttons template will add these buttons).
Note that only saves the changes in the DOM but
does not write the XML document to disk. You will
be warned before exiting if you have changes that have
not been saved to a file. The button rebuilds the
node and reapplies the style sheet without changing
the original DOM. The button will display the
node (with current edits) as pretty-print XML4 in a
new tab. The button will abort editing and
close the tab.

Clicking on the “Pin Up” icon () or right-clicking
on the tab will detach that tab and open it in a new
window allowing you to view multiple tabs simultane-
ously. Clicking the “Pin Down” icon () will reattach
the tab.

2.4 GUI Configuration

Figure 4 shows the Tree editor. In this example, only
two elements of the Uniform Item Set DOM are dis-
played in the FanXE Tree pane: the <Section> ele-
ment and its child <Series>. When the DOM is loaded,
the <Section> elements will be shown open in the Tree
(the “Open when loaded” box is checked).

The “Title” entry for the <Section> element in Fig-
ure 4 contains the following code:

set title "[node @Range]: [node @Title]"

The node command is aliased to the DOM node ob-
ject for that element and this Tcl code is executed in
a safe Tcl interpreter. The resulting value of the $title
variable is used as the label for that branch in the Tree.

When a user clicks on a <Section> element in the
Tree, the Section.xsl style sheet5 is applied against that
node and the HTML results are displayed in the View
pane. When a user clicks on a <Series> element, the
SeriesBrowse.xsl style sheet is applied and results are
displayed in the View pane. The SeriesBrowse.xsl style
sheet includes an button. When a user clicks the

button, the SeriesEdit.xsl style sheet is applied to
that node and the HTML results of that style sheet are
displayed in a new tab (if that node is already being
edited, the tab is simply moved to the foreground).

The “DisplayStyle” entry in Figure 4 references a
tixDisplayStyle (see section 5.3.1) defined in the

4Pretty-print XML is created by the xmlverba-
tim.xsl style sheet written by Oliver Becker (available at:
http://www.informatik.hu-berlin.de/̃ obecker/XSLT/).

5All style sheets are loaded and stored in memory when the
GUI starts.

Figure 4: Configuring tree structure

fanxe.xml or user configuration file and can be edited
within FanXE (Figure 5). This defines the font shape,
relative size, and color of the element label in the Tree.

FanXE also allows you to use the GUI editor to com-
pletely customize the layout of the GUI. You can con-
trol the base font size, colors and any additional X re-
sources. You can also customize the layout of the panes
(Figure 6).

All customization options can be overridden by the
user’s personal configuration.

Figure 5: Defining DisplayStyles

3

Figure 6: Configuring pane layout

2.5 Linking to Methods and Images

FanXE was designed so that it could be the front-end
interface to any application. It needs to be able to call
methods from the Tkhtml widgets. Using FanXE as
the hostname in http links accomplishes this. These
links are in the form:

http://FanXE/method[?arg1][. . .][&argN]

where method is the name of the public method being
called and arg1. . . argN are arguments to that method.

You can also link to a variety of internal images (such
as all the buttons like and) using the FanXE
hostname.6

2.6 Searching the DOMs

FanXE can search the DOMs with either XPath or
regular expressions. For both search methods, selecting
the “Trim” button will show only nodes in the tree that
match and will collapse all other nodes. If “Trim” is
not selected, matching nodes will simply be highlighted
(and opened if closed) while leaving the rest of the tree
in the same state.

6The built-in images come from a package I developed
called imageLib, which is itself maintained via FanXE. The
ShowImages method will display all available images and their
names in a new tab.

FanXE’s Tkhtml widgets also support a special
URI scheme (fanxe) of the form:

fanxe://DOMname/XPath

where DOMname is the name of the DOM (defined
in fanxe.xml) and XPath is any valid XPath expression.

XSLT style sheets can use these URIs to link one
XML document to another.

2.7 Editing Nodes

The magic of FanXE is the ability to convert an XML
node into an HTML form that can be edited and later
turned back into a new XML node. The trick is creat-
ing HTML <form> elements with specially constructed
name attributes.

The name attribute is made up of one or more tag:ID
pairs separated by a forward slash (“/”). At the end
of the tag:ID pairs, the name may optionally be fol-
lowed by an at sign (“@”) and an attribute name. The
full path of the node must be included in the name

attribute.
Each tag:ID pair includes the element’s tag and a

unique ID associated with that element (usually cre-
ated by the XSLT generate-id() function or the
fanxe:path() function). The ID can be any string as
long as it does not include a colon (“:”), slash (“/”) or

4

at sign (“@”). Also, if the ID begins with COPY, it will
be treated in a special way (see below).

For example, the following XML contains four ele-
ments:

<Root>

<Branch>

<Leaf Attribute=""/>

</Branch>

<Branch/>

</Root>

This can be represented by four HTML <form> ele-
ments with the following name attributes:

Root:r1

Root:r1/Branch:b1

Root:r1/Branch:b1/Leaf:l1@Attribute

Root:r1/Branch:b2

Note that you do not have to have an HTML
<form> element for each XML element. Referencing
Root:r1/Branch:b1 implicitly creates the Root:r1 el-
ement.

As in all XML documents, you can only have a single
root element.

The value of an attribute or a text node is determined
by the current contents of the HTML <form> elements.
See Table 1 for HTML <form> elements supported by
FanXE.

Nodes with an ID that begins with COPY are used to
copy all child elements of the original DOM into the new
DOM without creating an HTML <form> element for
each node. The value of the HTML <form> element
will be appended to the XPath of the original node and
the entire sub-tree will be replicated in the new DOM.

The <input type=“submit”> element can be used to
add, insert, delete or duplicate nodes within the node
being edited.

See Table 2 for a portion of the XSLT style sheet that
generated the HTML in Figure 5.

3 Command Line Interface

FanXE was written with the [incr Tcl] object oriented
extension. A command line script, fanxe, can be used
to access any public method. Usage of the script is:

fanxe [CLASS OPTIONS --] [method [ARGS]]

The script will instantiate a FanXE object with any
options you specify. If no method is specified and the X
environment is available, the script will default to the
GUI method and start the graphical user interface. Only
public methods can be called from the script. When

Table 1: Supported HTML <form> elements

<input

type=“submit”

name=[REQUIRED]

value=[REQUIRED]>

<input

type=“image”

name=[REQUIRED]

value=[REQUIRED]

src=[REQUIRED]>

<input

type=“checkbox | radio”

name=[REQUIRED]

value=[REQUIRED]

showvalue=[OPTIONAL; default=false]

(NOTE: nonstandard HTML)

checked=[OPTIONAL; default=FALSE]

disabled=[OPTIONAL; default=FALSE] >

<input

type=“text”

name=[REQUIRED]

value=[REQUIRED]

disabled=[OPTIONAL; default=FALSE]

size=[OPTIONAL; default=20] >

<input

type=“hidden”

name=[REQUIRED]

value=[REQUIRED]>

<textarea

rows=[OPTIONAL; default=5]

cols=[OPTIONAL; default=80] >

VALUE

</textarea>

<select

size=[OPTIONAL; default=# options]

multiple=[OPTIONAL; default=FALSE]

disabled=[OPTIONAL; default=FALSE] >

<option

value=[REQUIRED]>

OPTION-LABEL

</option>

</select>

5

Table 2: XSLT fragment to edit DisplayStyles

<!-- [...] -->

<xsl:for-each select="Style">

<tr><td>

<!-- DisplayStyles/Style@Name -->

<tt>

<xsl:element name="input">

<xsl:attribute name="type">

<xsl:text>text</xsl:text>

</xsl:attribute>

<xsl:attribute name="size">

<xsl:text>10</xsl:text>

</xsl:attribute>

<xsl:attribute name="name">

<xsl:value-of select="fanxe:path()"/>

<xsl:text>@Name</xsl:text>

</xsl:attribute>

<xsl:attribute name="value">

<xsl:value-of select="@Name"/>

</xsl:attribute>

</xsl:element>

</tt>

<!-- [...] -->

</xsl:for-each>

<tr><td>

<!-- Insert DisplayStyles/Style -->

<xsl:element name="input">

<xsl:attribute name="type">

submit

</xsl:attribute>

<xsl:attribute name="size">

<xsl:text>0</xsl:text>

</xsl:attribute>

<xsl:attribute name="name">

<xsl:value-of select="fanxe:path()"/>

<xsl:text>/Style:ADD</xsl:text>

</xsl:attribute>

<xsl:attribute name="value">

<xsl:text>Add a Style</xsl:text>

</xsl:attribute>

</xsl:element>

</td></tr>

<!-- [...] -->

creating subclasses (see section 4), I always create a
script with the same functionality.

In addition to the GUI method, FanXE has a num-
ber of methods that can be called with or without the
X environment. I will briefly discuss a few of these. All
public and protected methods and variables are docu-
mented in the man page.7

3.1 transform Method

The transform method is an interface to tdom’s XSLT
engine, one of the fastest and least buggy XSLT en-
gines available (and a primary reason for its inclusion
in FanXE; see section 5.1 for more details).

You specify an XML file (or a DOM already loaded
in memory) and a style sheet and the XSLT engine
will transform the results. You can pass parameters
to the style sheet, and you can have the results either
serialized or saved as a new DOM. I added a -document

option to add support for the xsl:document extension
allowing you to serialize the output into multiple files.

In addition to all the standard XSLT 1.0 functions
and elements, I’ve written a few XSLT functions in Tcl.
These include fanxe:tcl which will execute the string
argument in a safe Tcl interpreter and return the results
and fanxe:mtime which will return the file modification
time of the file name passed (the safe interpreter does
not include the file command).

The exslt8 extension elements work as-is with tdom
(and therefore with FanXE), but the functions dis-
tributed with exslt do not work with tdom. I partially
implemented the exslt:seconds and exslt:date

functions with Tcl code within FanXE and these func-
tions are available with the transform method.

Subclasses of FanXE can define their own Tcl-
written XSLT extensions.

3.2 compare Method

FanXE can store XML documents under revision con-
trol (see section 4.1.3). The compare method will com-
pare any two revisions of the XML document.

Each document will be split into segments speci-
fied by an XPath expression (the default is //Series).
Each XPath segment needs a unique key attribute.

Serialized XML text will be returned with the
changes. Nodes in the original revision will be
marked either as <Change Type=“Replace”> if
replaced or <Change Type=“Delete”> if deleted.
Nodes in the final revision will be marked as

7The man page is automatically generated by a script from the
source code. As long as the methods and variables are properly
commented, generating up-to-date documentation is simple.

8http://www.exslt.org/

6

Table 3: Sample Output of compare method

The description of MDRM=“B565” was changed and MDRM=“C869” was added.

<Differences Old="revision 1.20" New="revision 1.24">

<Change Type="Replace">

<Series MDRM="B565">Federal Home Loan Bank advances remaining maturity 1-3 years

<Item FFIEC="31" MNEM="RCFD" BeginDate="20010331" EndDate="99991231" Location="RC-M_5.a.(2)"/>

<Item FFIEC="41" MNEM="RCON" BeginDate="20010331" EndDate="99991231" Location="RC-M_5.a.(2)"/>

</Series>

</Change>

<Change Type="With">

<Series MDRM="B565">FHLB advances remaining maturity 1-3 years

<Item FFIEC="31" MNEM="RCFD" BeginDate="20010331" EndDate="99991231" Location="RC-M_5.a.(2)"/>

<Item FFIEC="41" MNEM="RCON" BeginDate="20010331" EndDate="99991231" Location="RC-M_5.a.(2)"/>

</Series>

</Change>

<Change Type="Add">

<Series MDRM="C869">Cash and balances due from dep. insts; items not subj to risk-wghting

<Item FFIEC="31" MNEM="RCFD" BeginDate="20050630" EndDate="99991231" Location="RC-R_34._B"/>

<Item FFIEC="41" MNEM="RCON" BeginDate="20050630" EndDate="99991231" Location="RC-R_34._B"/>

</Series>

</Change>

</Differences>

<Change Type=“With”> if replaced or <Change

Type=“Add”> if added. See Table 3 for a sample of
the output.

3.3 fork Method

When loading XML documents or XSLT style sheets
stored under revision control (see section 4.1.3),
FanXE will always try to load the revision with the
symbolic name defined by the class option -rev (the
default value is “Production”). To begin working on
changes while retaining the original symbolic name, you
can use the fork method. This will identify all files
stored in RCS used by FanXE and create a new sym-
bolic name (e.g. “Development”).

Note that FanXE is doing nothing more than la-
beling revisions with the new tag. It does not actually
create a new branch in RCS and has no means for merg-
ing changes from different revisions. I typically exe-
cute “fork Production Development”, make changes
under “Development,” generate a difference report be-
tween revisions, and then execute “fork Development

Production”.

4 Application Examples

The best way to see the other features of FanXE is to
look closely at various subclasses that I have developed.

Since first writing FanXE in October 2002, I have de-
veloped about a dozen applications using FanXE as
the basis. I’ll discuss three applications here and their
unique requirements.

4.1 ItemSet: Report Form Meta Data

The ItemSet class was the first application written
with FanXE and was the driving factor of its design.
The purpose of this application is to define and main-
tain a Uniform Item Set of commercial bank financial
data that can be adjusted for mergers. Using the Uni-

form Item Set XML document, we create SAS9 and
FAME10 programs (via XSLT) to build micro- and
macro- databases of commercial bank balance sheets
and income statements.

FanXE was originally written with the goal of being
the front-end GUI editor for this application. When
developing it, I knew that I would need an editor for
other XML applications and I was determined to make
FanXE as modular as possible. I also knew that I
would want to write applications that used the XML
documents without the GUI (an XSLT processor at the
minimum), so the FanXE GUI was always intended to
be only one portion of the application.

9http://www.sas.com/
10http://www.fame.sungard.com/products/fame9.html

7

4.1.1 Background on Merger-Adjusted Call
Reports

Every quarter, all commercial banks in the United
States are required to file balance sheet and income
statement information (the FFIEC Call Report11).
The Federal Reserve Board publishes an annual arti-
cle in the Federal Reserve Bulletin on the profitability
of commercial banks in the United States. We use Call
Report data for our analysis.

On the Call Report income statement, data are re-
ported year-to-date. When one bank merges with an-
other, the surviving bank does not always report the
income of the acquired bank. Since we are interested
in the profitability12 of banks, underestimating income
biases our estimates down. As more and larger banks
merge,13 the bias becomes more severe.

To capture the missing income data, we create a
merger-adjusted version of the Call Report which adds
the prior-period year-to-date income of all predecessors
of mergers (as well as an estimate of the current-quarter
income) to the successor’s income statement.

However, banks file different report forms if they have
foreign offices and smaller banks generally report less
detail than larger banks. These forms also change over
time (historically, different forms even requested en-
tirely different details of loan categories). We therefore
first have to create a common set of items that are re-
ported on all forms and track when items are added,
deleted or redefined. We then derive estimates of the
details not reported by smaller banks.14 This defines
our Uniform Item Set which we can then adjust for
mergers.

4.1.2 Defining the Meta Data

We wanted to store all the structural information about
the original report forms as well as our Uniform Item

Set in XML documents. These files would constitute
the meta data for our application. They contain no
financial data, just an index of Call Report series and
the definition of the series in our Uniform Item Set.

XML is a perfect language for this type of data be-
cause of its natural tree structure.15 In the Uniform

11http://www.ffiec.gov/ffiec report forms.htm#CallReports
12One measure of profitability is “Return on Assets,” defined

as the ratio of total income over a period to total average assets
over that period.

13In 1985, there were nearly 15,000 commercial banks. Today,
there are fewer than 8,000.

14We use the average aggregate proportions of the missing de-
tail from larger banks and apply those ratios to the micro data
of the smaller banks.

15When I first created this database, all information about the
report forms were stored in SAS data sets. This was not very
efficient and the SAS programs that parsed the data sets to build
the database and create HTML references were complex. A lot of

Item Set, some fields are inputs (direct mappings from
the raw Call Report) while others are formulas (sums
of other series in the Uniform Item Set). Each item
can have a different definition for different time peri-
ods. Some items are used to derive other detail items
for different reporters.

4.1.3 Revision Control

For this application, I also needed to keep track of all
revisions, and I needed the ability to generate difference
reports whenever the Call Report changed. I therefore
designed FanXE with the ability to store documents
using the Revision Control System (RCS).

FanXE does not require that documents be stored in
RCS and the RCS features can be turned off (-useRCS
0). However, when FanXE detects a file is stored in
RCS (and -useRCS is on), it will automatically check
documents in and out of RCS when loading and saving.

The compare method (see section 3.2) was written
to build these reports. The ItemSet subclass adds a
diffHTML method which calls compare, applies a style
sheet to the results (which adds a summary and links in
HTML) and posts the HTML on our internal website.

4.1.4 Cross-Referenced DOMs

When the Call Report changes, I use FanXE to man-
ually edit the Call Report Index. I then run a method
in the ItemSet class that will identify and open for
editing any nodes in the Uniform Item Set DOM that
are effected by the changes. Both XML documents are
reasonably large16 and FanXE’s performance is excel-
lent.

In addition to the Call Report Index and the Uniform

Item Set, I also maintain the size groups and lists of se-
ries that will be seasonally adjusted in ItemSet. All of
the XML documents loaded by the ItemSet class are
related to each other. I added the fanxe URI scheme
(see section 2.6) to FanXE for this reason. For exam-
ple, when browsing any node in the Uniform Item Set,
you can click on the original series name and be taken
to its entry in the Call Report Index, which will tell you
for what dates that series is available and its location
on the reporting forms. Alternatively, if you find an
item of interest on the Call Report form, you can look

fields were repeated (the series name and attributes were repeated
for each date change) and others were often blank or used for
different purposes depending on whether the specific item was an
input or a formula. Making the transition from SAS to XML was
not difficult because I was able to export the SAS data sets to
XML and use XSLT style sheets to transform them into the tree
structure that I desired.

16The Call Report Index XML document is over 12,000 lines.
The Uniform Item Set XML document is over 25,000 lines.

8

it up in the Call Report Index and click on the series
to see where it is used in the Uniform Item Set.

4.1.5 CGI Interface to the Uniform Item Set

Once all changes are final, another method is called that
builds static HTML index pages for the Call Report
Index and the Uniform Item Set. In addition to the
static pages, I have built CGI applications that can
query these XML documents. One query, for example,
will recursively follow all formulas in the Uniform Item

Set, cross-reference it with the Call Report Index, and
show a table with the locations of all input series from
each report form.

4.2 BCBreaks: Storing XML in Post-

greSQL

In addition to the quarterly Call Report data, we main-
tain weekly balance sheets of large commercial banks
and a sample panel of small commercial banks and
branches and agencies of foreign banks. From week to
week, we need to make corrections, called “breaks,” to
the aggregate time series from these reports to account
for mergers, revisions, and panel adjustments.

Each break record is stored in an XML document
with data about the institution responsible for the
break as well as attributes about the break such as
the start and end dates and levels of the break. The
BCBreaks class is an interface for storing the breaks.

An XSLT style sheet is applied to the breaks XML
document to create a FAME program that applies the
breaks in the database.

Like the ItemSet application, this data was orig-
inally stored in SAS data sets. This had a number
of drawbacks, including the fact that only one person
could edit the data set at a time and, if left open, the
application would crash when attempting to apply the
breaks.

I decided to store each break in a PostgreSQL
database to allow multiple users to edit simultane-
ously. I needed to modify FanXE to handle XML docu-
ments stored in something other than flat files. I added
the <loadDOM>, <saveDOM> and <saveNode> el-
ements to the fanxe.xml configuration file. These ele-
ments can contain Tcl scripts to load or save the entire
document or to save a single node.

The BCBreaks class has methods to handle loading
and saving nodes from the PostgreSQL database. The
<saveNode> script adds, deletes or modifies the break
records as users edit the DOM. In addition to making
the change, a log is written with the action and inode

that was edited and a NOTIFY tableUpdated command
is sent to the PostgreSQL database.

When the GUI is started, it registers pg listen to
wait for tableUpdated events. When an event is trig-
gered, the PostgreSQL log is referenced and any mod-
ifications are mirrored in real time in the GUI. If you
have a node open for editing and another user deletes
it, it will disappear from your screen. As soon as a user
adds a new break, it will appear in everyone’s GUI.

4.3 SDMX: Time Series XML Data

SDMX17 is a new standard (ISO/TS 17369:2005
SDMX) for exchanging statistical data among govern-
ment agencies. The Federal Reserve Board is plan-
ning to adopt SDMX for our new Downloadable Data
Project. Content providers within the Board will ex-
port data from FAME to SDMX-ML and provide the
XML documents to the public website maintainers.
Maintainers are currently developing the front-end in-
terface that will allow the public to query and download
the vast amounts of data the Board collects and main-
tains.

The SDMX application is used by content providers
inexperienced with XML to build the complex SDMX-
ML documents.

4.3.1 Application Front End

FanXE needed to be more than a simple XML docu-
ment editor. While command line interfaces are useful,
memorizing and issuing commands makes for a com-
plicated work flow. Therefore, FanXE needed to be
able to issue commands and show help specific to the
application.

The help page () for the SDMX class is dynami-
cally generated from one of its public methods based on
XML documents loaded into memory (Figure 7). This
allows users to create and edit SDMX structure, schema
and data files.

17http://www.sdmx.org/

Figure 7: SDMX help page

9

4.3.2 Cloning DOMs

Other FanXE applications discussed so far had hard-
coded XML documents that were always loaded. In the
case of SDMX, each user will need to load their own
XML documents and may need to open multiple files
of the same type.

I added the domClone method to FanXE that will
load a new XML document created by copying the
structure (Tree layout, style sheets used, etc.) of an
existing XML document. SDMX users can use this to
load new structure and configuration files.

5 Choosing Packages

My site is fairly homogeneous. All users connect to a
their section’s Linux server18 via Exceed.

Because I do not have to worry about shipping a
product and I have absolute control of what packages
are available on the Linux servers, I have not been
conservative with the use of other packages. FanXE
has a liberal mix of widgets from Tix, BLT, iwidgets
and more. FanXE was developed with TclPro 1.4.1
(which uses Tcl/Tk 8.3).

This section provides a brief overview of why I chose
some packages over others.

5.1 tdom versus tcldom

In the first versions of FanXE, I actually included sup-
port for both tdom and tcldom. The tdom package
at that time (version 0.7.4) had some XSLT bugs that
I couldn’t work around, but was otherwise much faster
than tcldom (which used libxslt for XSLT functions).
After reporting my problems to the tdom list, Rolf
Ade was quickly able to correct the bugs. Within three
months, all bugs I had found had been resolved. At
this point, the speed showdowns between tdom and
libxslt demonstrated that tdom was well ahead of the
competition. Rolf and others have done an excellent
job quashing bugs and keeping tdom ahead of the rest.
There are no known outstanding bugs in tdom. It does
not leak memory and has a perfectly reasonable mem-
ory footprint. However, it does not yet support XSLT
2.0 functions.

5.2 Tkhtml versus ihtml

Building an editor that was going to view HTML ob-
viously required an HTML widget. I initially tried the
iwidgets ihtml widget, but it simply couldn’t handle

18We recently migrated from Solaris R© 2.8 to Red Hat R© En-
terprise Linux R© Version 3. None of my Tcl/Tk code required
any changes.

nested tables. Tkhtml, however, has been able to han-
dle every nested table I have ever thrown at it.

Tkhtml doesn’t support CSS and, to date, there
hasn’t been much development. There has been some
recent activity and promise of a new version, but to
date the current version of Tkhtml does everything I
need.

5.3 Tix versus BLT

I consider some of the BLT package to be irreplaceable
(e.g. blt::exec). Every widget available in Tix has
a BLT counterpart, yet I still chose to use some Tix
widgets over some BLT widgets.

5.3.1 tixTree versus blt::hierbox

I needed a tree widget for the Tree pane (see section
2.1). This widget needed to be high performance, so
only C-coded widgets were considered. Between Tix
and BLT, Tix won my speed test by only a slight mar-
gin.

I ultimately chose Tix because I liked the
tixDisplayStyle (see section 2.4). This allows me to
configure and reconfigure the font for every node in the
tree based on the element.

I also have more familiarity with the Tix API as I
have been using it for mega-widgets for as long as I have
been programming in Tcl/Tk. The lack of ongoing
support for Tix has made me consider replacing the
Tix widgets and I may yet do so. The API for Tix is
noticeably different from BLT and others so that this
will not be a simple process. So far, by the time I’ve
upgraded to the latest version of Tcl/Tk, someone has
always had a patch to keep Tix alive. I continue to
hope that someone will keep Tix going.

5.3.2 blt::tabset versus tixNoteBook

For the Tabbed pane (see section 2.3) I needed a
tabset widget. Tix has tixNoteBook, iwidgets has
iwidgets::tabset and BWidget has NoteBook. Only
the BLT’s blt::tabset offers detachable tabs. I con-
sidered the ability to view and edit multiple nodes at
the same time as a critical feature and chose BLT for
this reason alone.

6 Availability

FanXE was created as part of my work for the Fed-
eral Government. It is therefore not copyrightable and
available in the Public Domain. FanXE is available at
http://wklink.freeshell.org/.

10

7 Thanks

I have stood on the shoulders of many giants to
build FanXE. Thanks to John Ousterhout for creat-
ing Tcl/Tk, Jeff Hobbes and the rest of the Tcl/Tk
core team maintaining everything, Michael McLennan
for [incr Tcl], Jochen Löwer and Rolf Ade for tdom,
D. Richard Hipp for Tkhtml, George Howlett for BLT,
Ioi Lam for Tix (and others who have kept it working),
and the entire community for providing answers when-
ever I’ve had questions.

11

